Paper 1, Section I, F

Analysis I
Part IA, 2017

Given an increasing sequence of non-negative real numbers (an)n=1\left(a_{n}\right)_{n=1}^{\infty}, let

sn=1nk=1naks_{n}=\frac{1}{n} \sum_{k=1}^{n} a_{k}

Prove that if snxs_{n} \rightarrow x as nn \rightarrow \infty for some xRx \in \mathbb{R} then also anxa_{n} \rightarrow x as nn \rightarrow \infty