Paper 1, Section II, F

Analysis I
Part IA, 2017

(a) Let (xn)n=1\left(x_{n}\right)_{n=1}^{\infty} be a non-negative and decreasing sequence of real numbers. Prove that n=1xn\sum_{n=1}^{\infty} x_{n} converges if and only if k=02kx2k\sum_{k=0}^{\infty} 2^{k} x_{2^{k}} converges.

(b) For sRs \in \mathbb{R}, prove that n=1ns\sum_{n=1}^{\infty} n^{-s} converges if and only if s>1s>1.

(c) For any kNk \in \mathbb{N}, prove that

limn2nnk=0\lim _{n \rightarrow \infty} 2^{-n} n^{k}=0

(d) The sequence (an)n=0\left(a_{n}\right)_{n=0}^{\infty} is defined by a0=1a_{0}=1 and an+1=2ana_{n+1}=2^{a_{n}} for n0n \geqslant 0. For any kNk \in \mathbb{N}, prove that

limn2nkan=0\lim _{n \rightarrow \infty} \frac{2^{n^{k}}}{a_{n}}=0