Let β>0. The Curie-Weiss Model of ferromagnetism is the probability distribution defined as follows. For n∈N, define random variables S1,…,Sn with values in {±1} such that the probabilities are given by
P(S1=s1,…,Sn=sn)=Zn,β1exp(2nβi=1∑nj=1∑nsisj)
where Zn,β is the normalisation constant
Zn,β=s1∈{±1}∑⋯sn∈{±1}∑exp(2nβi=1∑nj=1∑nsisj)
(a) Show that E(Si)=0 for any i.
(b) Show that P(S2=+1∣S1=+1)⩾P(S2=+1). [You may use E(SiSj)⩾0 for all i,j without proof. ]
(c) Let M=n1∑i=1nSi. Show that M takes values in En={−1+n2k:k=0,…,n}, and that for each m∈En the number of possible values of (S1,…,Sn) such that M=m is
(21+mn)!(21−mn)!n!
Find P(M=m) for any m∈En.