Paper 1, Section II, 8C8 \mathrm{C}

Vectors and Matrices
Part IA, 2017

(a) Given yR3\mathbf{y} \in \mathbb{R}^{3} consider the linear transformation TT which maps

xTx=(xe1)e1+x×y\mathbf{x} \mapsto T \mathbf{x}=\left(\mathbf{x} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}+\mathbf{x} \times \mathbf{y}

Express TT as a matrix with respect to the standard basis e1,e2,e3\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, and determine the rank and the dimension of the kernel of TT for the cases (i) y=c1e1\mathbf{y}=c_{1} \mathbf{e}_{1}, where c1c_{1} is a fixed number, and (ii) ye1=0\mathbf{y} \cdot \mathbf{e}_{1}=0.

(b) Given that the equation

ABx=dA B \mathbf{x}=\mathbf{d}

where

A=(110023012),B=(141321111) and d=(11k)A=\left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 1 & 2 \end{array}\right), \quad B=\left(\begin{array}{ccc} 1 & 4 & 1 \\ -3 & -2 & 1 \\ 1 & -1 & -1 \end{array}\right) \quad \text { and } \quad \mathbf{d}=\left(\begin{array}{l} 1 \\ 1 \\ k \end{array}\right)

has a solution, show that 4k=14 k=1.