For a symmetric simple random walk (Xn) on Z starting at 0 , let Mn=maxi⩽nXi.
(i) For m⩾0 and x∈Z, show that
P(Mn⩾m,Xn=x)={P(Xn=x)P(Xn=2m−x) if x⩾m if x<m
(ii) For m⩾0, show that P(Mn⩾m)=P(Xn=m)+2∑x>mP(Xn=x) and that
P(Mn=m)=P(Xn=m)+P(Xn=m+1)
(iii) Prove that E(Mn2)<E(Xn2).