Paper 1, Section II, E
Part IA, 2018
State and prove the Comparison Test for real series.
Assume for all . Show that if converges, then so do and . In each case, does the converse hold? Justify your answers.
Let be a decreasing sequence of positive reals. Show that if converges, then as . Does the converse hold? If converges, must it be the case that as ? Justify your answers.