Paper 1, Section II, B
Let be a real symmetric matrix.
(a) Prove the following:
(i) Each eigenvalue of is real and there is a corresponding real eigenvector.
(ii) Eigenvectors corresponding to different eigenvalues are orthogonal.
(iii) If there are distinct eigenvalues then the matrix is diagonalisable.
Assuming that has distinct eigenvalues, explain briefly how to choose (up to an arbitrary scalar factor) the vector such that is maximised.
(b) A scalar and a non-zero vector such that
are called, for a specified matrix , respectively a generalised eigenvalue and a generalised eigenvector of .
Assume the matrix is real, symmetric and positive definite (i.e. for all non-zero complex vectors ).
Prove the following:
(i) If is a generalised eigenvalue of then it is a root of .
(ii) Each generalised eigenvalue of is real and there is a corresponding real generalised eigenvector.
(iii) Two generalised eigenvectors , corresponding to different generalised eigenvalues, are orthogonal in the sense that .
(c) Find, up to an arbitrary scalar factor, the vector such that the value of is maximised, and the corresponding value of , where