Paper 2, Section II, B

Differential Equations
Part IA, 2018

The function u(x,y)u(x, y) satisfies the partial differential equation

a2ux2+b2uxy+c2uy2=0a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}=0

where a,ba, b and cc are non-zero constants.

Defining the variables ξ=αx+y\xi=\alpha x+y and η=βx+y\eta=\beta x+y, where α\alpha and β\beta are constants, and writing v(ξ,η)=u(x,y)v(\xi, \eta)=u(x, y) show that

a2ux2+b2uxy+c2uy2=A(α,β)2vξ2+B(α,β)2vξη+C(α,β)2vη2,a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}=A(\alpha, \beta) \frac{\partial^{2} v}{\partial \xi^{2}}+B(\alpha, \beta) \frac{\partial^{2} v}{\partial \xi \partial \eta}+C(\alpha, \beta) \frac{\partial^{2} v}{\partial \eta^{2}},

where you should determine the functions A(α,β),B(α,β)A(\alpha, \beta), B(\alpha, \beta) and C(α,β)C(\alpha, \beta).

If the quadratic as2+bs+c=0a s^{2}+b s+c=0 has distinct real roots then show that α\alpha and β\beta can be chosen such that A(α,β)=C(α,β)=0A(\alpha, \beta)=C(\alpha, \beta)=0 and B(α,β)0B(\alpha, \beta) \neq 0.

If the quadratic as2+bs+c=0a s^{2}+b s+c=0 has a repeated root then show that α\alpha and β\beta can be chosen such that A(α,β)=B(α,β)=0A(\alpha, \beta)=B(\alpha, \beta)=0 and C(α,β)0C(\alpha, \beta) \neq 0.

Hence find the general solutions of the equations

2ux2+32uxy+22uy2=0\frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial x \partial y}+2 \frac{\partial^{2} u}{\partial y^{2}}=0

and

2ux2+22uxy+2uy2=0\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0