Paper 1, Section II, F

Analysis I
Part IA, 2020

(a) Let (xn)\left(x_{n}\right) be a bounded sequence of real numbers. Show that (xn)\left(x_{n}\right) has a convergent subsequence.

(b) Let (zn)\left(z_{n}\right) be a bounded sequence of complex numbers. For each n1n \geqslant 1, write zn=xn+iynz_{n}=x_{n}+i y_{n}. Show that (zn)\left(z_{n}\right) has a subsequence (znj)\left(z_{n_{j}}\right) such that (xnj)\left(x_{n_{j}}\right) converges. Hence, or otherwise, show that (zn)\left(z_{n}\right) has a convergent subsequence.

(c) Write N={1,2,3,}\mathbb{N}=\{1,2,3, \ldots\} for the set of positive integers. Let MM be a positive real number, and for each iNi \in \mathbb{N}, let X(i)=(x1(i),x2(i),x3(i),)X^{(i)}=\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, \ldots\right) be a sequence of real numbers with xj(i)M\left|x_{j}^{(i)}\right| \leqslant M for all i,jNi, j \in \mathbb{N}. By induction on ii or otherwise, show that there exist sequences N(i)=(n1(i),n2(i),n3(i),)N^{(i)}=\left(n_{1}^{(i)}, n_{2}^{(i)}, n_{3}^{(i)}, \ldots\right) of positive integers with the following properties:

  • for all iNi \in \mathbb{N}, the sequence N(i)N^{(i)} is strictly increasing;

  • for all iN,N(i+1)i \in \mathbb{N}, N^{(i+1)} is a subsequence of N(i);N^{(i)} ; and

  • for all kNk \in \mathbb{N} and all iNi \in \mathbb{N} with 1ik1 \leqslant i \leqslant k, the sequence

(xn1(k)(i),xn2(k)(i),xn3(k)(i),)\left(x_{n_{1}^{(k)}}^{(i)}, x_{n_{2}^{(k)}}^{(i)}, x_{n_{3}^{(k)}}^{(i)}, \ldots\right)

converges.

Hence, or otherwise, show that there exists a strictly increasing sequence (mj)\left(m_{j}\right) of positive integers such that for all iNi \in \mathbb{N} the sequence (xm1(i),xm2(i),xm3(i),)\left(x_{m_{1}}^{(i)}, x_{m_{2}}^{(i)}, x_{m_{3}}^{(i)}, \ldots\right) converges.