(a) Let S be the set of all functions f:N→R. Define δ:S→S by
(δf)(n)=f(n+1)−f(n)
(i) Define the binomial coefficient (nr) for 0⩽r⩽n. Setting (nr)=0 when r>n, prove from your definition that if fr(n)=(nr) then δfr=fr−1.
(ii) Show that if f∈S is integer-valued and δk+1f=0, then
f(n)=c0(nk)+c1(nk−1)+⋯+ck−1(n1)+ck
for some integers c0,…,ck.
(b) State the binomial theorem. Show that
r=0∑n(−1)r(nr)2=⎩⎪⎨⎪⎧0(−1)n/2(nn/2) if n is odd if n is even