Paper 4, Section II, 8E

Numbers and Sets
Part IA, 2021

(a) Prove that a countable union of countable sets is countable.

(b) (i) Show that the set NN\mathbb{N}^{\mathbb{N}} of all functions NN\mathbb{N} \rightarrow \mathbb{N} is uncountable.

(ii) Determine the countability or otherwise of each of the two sets

A={fNN:f(n)f(n+1) for all nN},B={fNN:f(n)f(n+1) for all nN}\begin{aligned} &A=\left\{f \in \mathbb{N}^{\mathbb{N}}: f(n) \leqslant f(n+1) \text { for all } n \in \mathbb{N}\right\}, \\ &B=\left\{f \in \mathbb{N}^{\mathbb{N}}: f(n) \geqslant f(n+1) \text { for all } n \in \mathbb{N}\right\} \end{aligned}

Justify your answers.

(c) A permutation σ\sigma of the natural numbers N\mathbb{N} is a mapping σNN\sigma \in \mathbb{N}^{\mathbb{N}} that is bijective. Determine the countability or otherwise of each of the two sets CC and DD of permutations, justifying your answers:

(i) CC is the set of all permutations σ\sigma of N\mathbb{N} such that σ(j)=j\sigma(j)=j for all sufficiently large jj.

(ii) DD is the set all permutations σ\sigma of N\mathbb{N} such that

σ(j)=j1 or j or j+1\sigma(j)=j-1 \text { or } j \text { or } j+1

for each jj.