3.II.16E

Numerical Analysis
Part IB, 2001

Let the monic polynomials pn,n0p_{n}, n \geqslant 0, be orthogonal with respect to the weight function w(x)>0,a<x<bw(x)>0, a<x<b, where the degree of each pnp_{n} is exactly nn.

(a) Prove that each pn,n1p_{n}, n \geqslant 1, has nn distinct zeros in the interval (a,b)(a, b).

(b) Suppose that the pnp_{n} satisfy the three-term recurrence relation

pn(x)=(xan)pn1(x)bn2pn2(x),n2p_{n}(x)=\left(x-a_{n}\right) p_{n-1}(x)-b_{n}^{2} p_{n-2}(x), \quad n \geqslant 2

where p0(x)1,p1(x)=xa1p_{0}(x) \equiv 1, p_{1}(x)=x-a_{1}. Set

An=(a1b200b2a2b300bn1an1bn00bnan),n2.A_{n}=\left(\begin{array}{ccccc} a_{1} & b_{2} & 0 & \cdots & 0 \\ b_{2} & a_{2} & b_{3} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{n-1} & a_{n-1} & b_{n} \\ 0 & \cdots & 0 & b_{n} & a_{n} \end{array}\right), \quad n \geqslant 2 .

Prove that pn(x)=det(xIAn),n2p_{n}(x)=\operatorname{det}\left(x I-A_{n}\right), n \geqslant 2, and deduce that all the eigenvalues of AnA_{n} reside in (a,b)(a, b).