Let f∈C[a,b] and let n+1 distinct points x0,…,xn∈[a,b] be given.
(a) Define the divided difference f[x0,…,xn] of order n in terms of interpolating polynomials. Prove that it is a symmetric function of the variables xi,i=0,…,n.
(b) Prove the recurrence relation
f[x0,…,xn]=xn−x0f[x1,…,xn]−f[x0,…,xn−1]
(c) Hence or otherwise deduce that, for any i=j, we have
f[x0,…,xn]=xj−xif[x0,…,xi−1,xi+1,…,xn]−f[x0,…,xj−1,xj+1,…,xn].
(d) From the formulas above, show that, for any i=1,…,n−1,
f[x0,…,xi−1,xi+1,…,xn]=γf[x0,…,xn−1]+(1−γ)f[x1,…,xn],
where γ=xn−x0xi−x0.