2.I.7B

Complex Methods
Part IB, 2003

(a) Using the residue theorem, evaluate

z=1(z1z)2ndzz\int_{|z|=1}\left(z-\frac{1}{z}\right)^{2 n} \frac{d z}{z}

(b) Deduce that

02πsin2ntdt=π22n1(2n)!(n!)2\int_{0}^{2 \pi} \sin ^{2 n} t d t=\frac{\pi}{2^{2 n-1}} \frac{(2 n) !}{(n !)^{2}}