3.I.3E3 . \mathrm{I} . 3 \mathrm{E} \quad

Further Analysis
Part IB, 2003

(a) Let f:CCf: \mathbb{C} \rightarrow \mathbb{C} be an analytic function such that f(z)1+z1/2|f(z)| \leqslant 1+|z|^{1 / 2} for every zz. Prove that ff is constant.

(b) Let f:CCf: \mathbb{C} \rightarrow \mathbb{C} be an analytic function such that Re(f(z))0\operatorname{Re}(f(z)) \geqslant 0 for every zz. Prove that ff is constant.