1.II.14E

Linear Mathematics
Part IB, 2003

(a) Let U,UU, U^{\prime} be subspaces of a finite-dimensional vector space VV. Prove that dim(U+U)=dimU+dimUdim(UU).\operatorname{dim}\left(U+U^{\prime}\right)=\operatorname{dim} U+\operatorname{dim} U^{\prime}-\operatorname{dim}\left(U \cap U^{\prime}\right) .

(b) Let VV and WW be finite-dimensional vector spaces and let α\alpha and β\beta be linear maps from VV to WW. Prove that

rank(α+β)rankα+rankβ\operatorname{rank}(\alpha+\beta) \leqslant \operatorname{rank} \alpha+\operatorname{rank} \beta

(c) Deduce from this result that

rank(α+β)rankαrankβ\operatorname{rank}(\alpha+\beta) \geqslant|\operatorname{rank} \alpha-\operatorname{rank} \beta|

(d) Let V=W=RnV=W=\mathbb{R}^{n} and suppose that 1rsn1 \leqslant r \leqslant s \leqslant n. Exhibit linear maps α,β:VW\alpha, \beta: V \rightarrow W such that rankα=r,rankβ=s\operatorname{rank} \alpha=r, \operatorname{rank} \beta=s and rank(α+β)=sr\operatorname{rank}(\alpha+\beta)=s-r. Suppose that r+snr+s \geqslant n. Exhibit linear maps α,β:VW\alpha, \beta: V \rightarrow W such that rankα=r,rankβ=s\operatorname{rank} \alpha=r, \operatorname{rank} \beta=s and rank(α+β)=n\operatorname{rank}(\alpha+\beta)=n.