2.I.5BNumerical AnalysisPart IB, 2003LetA=(1aa2a3a31aa2a2a31aaa2a31),b=(γ00γa),γ=1−a4≠0A=\left(\begin{array}{cccc} 1 & a & a^{2} & a^{3} \\ a^{3} & 1 & a & a^{2} \\ a^{2} & a^{3} & 1 & a \\ a & a^{2} & a^{3} & 1 \end{array}\right), \quad b=\left(\begin{array}{c} \gamma \\ 0 \\ 0 \\ \gamma a \end{array}\right), \quad \gamma=1-a^{4} \neq 0A=⎝⎜⎜⎜⎛1a3a2aa1a3a2a2a1a3a3a2a1⎠⎟⎟⎟⎞,b=⎝⎜⎜⎜⎛γ00γa⎠⎟⎟⎟⎞,γ=1−a4=0Find the LU factorization of the matrix AAA and use it to solve the system Ax=bA x=bAx=b.