Given (n+1) distinct points x0,x1,…,xn, let
ℓi(x)=k=0k=i∏nxi−xkx−xk
be the fundamental Lagrange polynomials of degree n, let
ω(x)=i=0∏n(x−xi)
and let p be any polynomial of degree ≤n.
(a) Prove that ∑i=0np(xi)ℓi(x)≡p(x).
(b) Hence or otherwise derive the formula
ω(x)p(x)=i=0∑nx−xiAi,Ai=ω′(xi)p(xi)
which is the decomposition of p(x)/ω(x) into partial fractions.