1.II.16B

Complex Methods
Part IB, 2003

Sketch the region AA which is the intersection of the discs

D0={zC:z<1} and D1={zC:z(1+i)<1}.D_{0}=\{z \in \mathbb{C}:|z|<1\} \quad \text { and } \quad D_{1}=\{z \in \mathbb{C}:|z-(1+i)|<1\} .

Find a conformal mapping that maps AA onto the right half-plane H={zC:Rez>0}H=\{z \in \mathbb{C}: \operatorname{Re} z>0\}. Also find a conformal mapping that maps AA onto D0D_{0}.

[Hint: You may find it useful to consider maps of the form w(z)=az+bcz+dw(z)=\frac{a z+b}{c z+d}.]