3.I.11ANumerical AnalysisPart IB, 2004The linear system[α211α221α]x=b\left[\begin{array}{lll} \alpha & 2 & 1 \\ 1 & \alpha & 2 \\ 2 & 1 & \alpha \end{array}\right] \mathbf{x}=\mathbf{b}⎣⎢⎡α122α112α⎦⎥⎤x=bwhere real α≠0\alpha \neq 0α=0 and b∈R3\mathbf{b} \in \mathbb{R}^{3}b∈R3 are given, is solved by the iterative procedurex(k+1)=−1α[021102210]x(k)+1αb,k⩾0\mathbf{x}^{(k+1)}=-\frac{1}{\alpha}\left[\begin{array}{lll} 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{array}\right] \mathbf{x}^{(k)}+\frac{1}{\alpha} \mathbf{b}, \quad k \geqslant 0x(k+1)=−α1⎣⎢⎡012201120⎦⎥⎤x(k)+α1b,k⩾0Determine the conditions on α\alphaα that guarantee convergence.