1.I 2 A2 \mathrm{~A} \quad

Geometry
Part IB, 2005

Let σ:R2R3\sigma: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} be the map defined by

σ(u,v)=((a+bcosu)cosv,(a+bcosu)sinv,bsinu)\sigma(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u)

where 0<b<a0<b<a. Describe briefly the image T=σ(R2)R3T=\sigma\left(\mathbf{R}^{2}\right) \subset \mathbf{R}^{3}. Let VV denote the open subset of R2\mathbf{R}^{2} given by 0<u<2π,0<v<2π0<u<2 \pi, 0<v<2 \pi; prove that the restriction σV\sigma_{V} defines a smooth parametrization of a certain open subset (which you should specify) of TT. Hence, or otherwise, prove that TT is a smooth embedded surface in R3\mathbf{R}^{3}.

[You may assume that the image under σ\sigma of any open set BR2B \subset \mathbf{R}^{2} is open in TT.]