3.I.2A
Part IB, 2005
Write down the Riemannian metric on the disc model of the hyperbolic plane. Given that the length minimizing curves passing through the origin correspond to diameters, show that the hyperbolic circle of radius centred on the origin is just the Euclidean circle centred on the origin with Euclidean . Prove that the hyperbolic area is .
State the Gauss-Bonnet theorem for the area of a hyperbolic triangle. Given a hyperbolic triangle and an interior point , show that the distance from to the nearest side is at most .