3.II.12A
Describe geometrically the stereographic projection map from the unit sphere to the extended complex plane , positioned equatorially, and find a formula for .
Show that any Möbius transformation on has one or two fixed points. Show that the Möbius transformation corresponding (under the stereographic projection map) to a rotation of through a non-zero angle has exactly two fixed points and , where . If now is a Möbius transformation with two fixed points and satisfying , prove that either corresponds to a rotation of , or one of the fixed points, say , is an attractive fixed point, i.e. for as .
[You may assume the fact that any rotation of corresponds to some Möbius transformation of under the stereographic projection map.]