4.I.5H

Methods
Part IB, 2005

Show how the general solution of the wave equation for y(x,t)y(x, t),

1c22t2y(x,t)2x2y(x,t)=0\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} y(x, t)-\frac{\partial^{2}}{\partial x^{2}} y(x, t)=0

can be expressed as

y(x,t)=f(ctx)+g(ct+x).y(x, t)=f(c t-x)+g(c t+x) .

Show that the boundary conditions y(0,t)=y(L,t)=0y(0, t)=y(L, t)=0 relate the functions ff and gg and require them to be periodic with period 2L2 L.

Show that, with these boundary conditions,

120L(1c2(yt)2+(yx)2)dx=LLg(ct+x)2 dx\frac{1}{2} \int_{0}^{L}\left(\frac{1}{c^{2}}\left(\frac{\partial y}{\partial t}\right)^{2}+\left(\frac{\partial y}{\partial x}\right)^{2}\right) \mathrm{d} x=\int_{-L}^{L} g^{\prime}(c t+x)^{2} \mathrm{~d} x

and that this is a constant independent of tt.