Define an isotropic tensor and show that δij,ϵijk are isotropic tensors.
For x^ a unit vector and dS(x^) the area element on the unit sphere show that
∫dS(x^)x^i1…x^in
is an isotropic tensor for any n. Hence show that
∫dS(x^)x^ix^j=aδij,∫dS(x^)x^ix^jx^k=0∫dS(x^)x^ix^jx^kx^l=b(δijδkl+δikδjl+δilδjk)
for some a,b which should be determined.
Explain why
∫V d3x(x1+−1x2)nf(∣x∣)=0,n=2,3,4
where V is the region inside the unit sphere.
[The general isotropic tensor of rank 4 has the form aδijδkl+bδikδjl+cδilδjk. ]