4.II.16H

Methods
Part IB, 2005

Define an isotropic tensor and show that δij,ϵijk\delta_{i j}, \epsilon_{i j k} are isotropic tensors.

For x^\hat{\mathbf{x}} a unit vector and dS(x^)\mathrm{d} S(\hat{\mathbf{x}}) the area element on the unit sphere show that

dS(x^)x^i1x^in\int \mathrm{d} S(\hat{\mathbf{x}}) \hat{x}_{i_{1}} \ldots \hat{x}_{i_{n}}

is an isotropic tensor for any nn. Hence show that

dS(x^)x^ix^j=aδij,dS(x^)x^ix^jx^k=0dS(x^)x^ix^jx^kx^l=b(δijδkl+δikδjl+δilδjk)\begin{aligned} &\int \mathrm{d} S(\hat{\mathbf{x}}) \hat{x}_{i} \hat{x}_{j}=a \delta_{i j}, \quad \int \mathrm{d} S(\hat{\mathbf{x}}) \hat{x}_{i} \hat{x}_{j} \hat{x}_{k}=0 \\ &\int \mathrm{d} S(\hat{\mathbf{x}}) \hat{x}_{i} \hat{x}_{j} \hat{x}_{k} \hat{x}_{l}=b\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \end{aligned}

for some a,ba, b which should be determined.

Explain why

V d3x(x1+1x2)nf(x)=0,n=2,3,4\int_{V} \mathrm{~d}^{3} x\left(x_{1}+\sqrt{-1} x_{2}\right)^{n} f(|\mathbf{x}|)=0, \quad n=2,3,4

where VV is the region inside the unit sphere.

[The general isotropic tensor of rank 4 has the form aδijδkl+bδikδjl+cδilδjk.a \delta_{i j} \delta_{k l}+b \delta_{i k} \delta_{j l}+c \delta_{i l} \delta_{j k} . ]