2.II.16G

Quantum Mechanics
Part IB, 2005

A particle of mass mm moving in a one-dimensional harmonic oscillator potential satisfies the Schrödinger equation

HΨ(x,t)=itΨ(x,t),H \Psi(x, t)=i \hbar \frac{\partial}{\partial t} \Psi(x, t),

where the Hamiltonian is given by

H=22md2dx2+12mω2x2H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2}

The operators aa and aa^{\dagger} are defined by

a=12(βx+iβp),a=12(βxiβp)a=\frac{1}{\sqrt{2}}\left(\beta x+\frac{i}{\beta \hbar} p\right), \quad a^{\dagger}=\frac{1}{\sqrt{2}}\left(\beta x-\frac{i}{\beta \hbar} p\right)

where β=mω/\beta=\sqrt{m \omega / \hbar} and p=i/xp=-i \hbar \partial / \partial x is the usual momentum operator. Show that [a,a]=1\left[a, a^{\dagger}\right]=1.

Express xx and pp in terms of aa and aa^{\dagger} and, hence or otherwise, show that HH can be written in the form

H=(aa+12)ωH=\left(a^{\dagger} a+\frac{1}{2}\right) \hbar \omega

Show, for an arbitrary wave function Ψ\Psi, that dxΨHΨ12ω\int d x \Psi^{*} H \Psi \geq \frac{1}{2} \hbar \omega and hence that the energy of any state satisfies the bound

E12ωE \geq \frac{1}{2} \hbar \omega

Hence, or otherwise, show that the ground state wave function satisfies aΨ0=0a \Psi_{0}=0 and that its energy is given by

E0=12ωE_{0}=\frac{1}{2} \hbar \omega

By considering HH acting on aΨ0,(a)2Ψ0a^{\dagger} \Psi_{0},\left(a^{\dagger}\right)^{2} \Psi_{0}, and so on, show that states of the form

(a)nΨ0\left(a^{\dagger}\right)^{n} \Psi_{0}

(n>0)(n>0) are also eigenstates and that their energies are given by En=(n+12)ω.E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega .