4.I.7H

Electromagnetism
Part IB, 2005

For a static current density J(x)\mathbf{J}(\mathbf{x}) show that we may choose the vector potential A(x)\mathbf{A}(\mathbf{x}) so that

2A=μ0J.-\nabla^{2} \mathbf{A}=\mu_{0} \mathbf{J} .

For a loop LL, centred at the origin, carrying a current II show that

A(x)=μ0I4πL1xrdrμ0I4π1x3L12x×(r×dr) as x\mathbf{A}(\mathbf{x})=\frac{\mu_{0} I}{4 \pi} \oint_{L} \frac{1}{|\mathbf{x}-\mathbf{r}|} \mathrm{d} \mathbf{r} \sim-\frac{\mu_{0} I}{4 \pi} \frac{1}{|\mathbf{x}|^{3}} \oint_{L} \frac{1}{2} \mathbf{x} \times(\mathbf{r} \times \mathrm{d} \mathbf{r}) \quad \text { as } \quad|\mathbf{x}| \rightarrow \infty

[You may assume

214πx=δ3(x)-\nabla^{2} \frac{1}{4 \pi|\mathbf{x}|}=\delta^{3}(\mathbf{x})

and for fixed vectors a,b\mathbf{a}, \mathbf{b}

Ladr=0,L(arbdr+bradr)=0.]\left.\oint_{L} \mathbf{a} \cdot \mathrm{d} \mathbf{r}=0, \quad \oint_{L}(\mathbf{a} \cdot \mathbf{r} \mathbf{b} \cdot \mathrm{d} \mathbf{r}+\mathbf{b} \cdot \mathbf{r} \mathbf{a} \cdot \mathrm{d} \mathbf{r})=0 .\right]