For a static current density J(x) show that we may choose the vector potential A(x) so that
−∇2A=μ0J.
For a loop L, centred at the origin, carrying a current I show that
A(x)=4πμ0I∮L∣x−r∣1dr∼−4πμ0I∣x∣31∮L21x×(r×dr) as ∣x∣→∞
[You may assume
−∇24π∣x∣1=δ3(x)
and for fixed vectors a,b
∮La⋅dr=0,∮L(a⋅rb⋅dr+b⋅ra⋅dr)=0.]