1.I.4G
Part IB, 2005
The four-velocity of a particle of rest mass is defined by , where is the proper time (the time as measured in the particle's rest frame). Derive the expression for each of the four components of in terms of the components of the three-velocity and the speed of light, .
Show that for an appropriately defined scalar product.
The four-momentum, , of a particle of rest mass defines a relativistic generalisation of energy and momentum. Show that the standard non-relativistic expressions for the momentum and kinetic energy of a particle with mass travelling with velocity are obtained in the limit . Show also how the concept of a rest energy equal to emerges.