3.II.19F

Numerical Analysis
Part IB, 2005

Given real μ0\mu \neq 0, we consider the matrix

A=[1μ10011μ10011μ10011μ]A=\left[\begin{array}{cccc} \frac{1}{\mu} & 1 & 0 & 0 \\ -1 & \frac{1}{\mu} & 1 & 0 \\ 0 & -1 & \frac{1}{\mu} & 1 \\ 0 & 0 & -1 & \frac{1}{\mu} \end{array}\right]

Construct the Jacobi and Gauss-Seidel iteration matrices originating in the solution of the linear system Ax=bA x=b.

Determine the range of real μ0\mu \neq 0 for which each iterative procedure converges.