1.II.10C
Part IB, 2005
Let be a group, and a subgroup of finite index. By considering an appropriate action of on the set of left cosets of , prove that always contains a normal subgroup of such that the index of in is finite and divides !, where is the index of in .
Now assume that is a finite group of order , where and are prime numbers with . Prove that the subgroup of generated by any element of order is necessarily normal.