4.I.9D

Markov Chains
Part IB, 2005

Prove that the simple symmetric random walk in three dimensions is transient.

[You may wish to recall Stirling's formula: n!(2π)12nn+12en.n ! \sim(2 \pi)^{\frac{1}{2}} n^{n+\frac{1}{2}} e^{-n} . ]