2.II.12H

Geometry
Part IB, 2006

Let σ:VUR3\sigma: V \rightarrow U \subset \mathbf{R}^{3} denote a parametrized smooth embedded surface, where VV is an open ball in R2\mathbf{R}^{2} with coordinates (u,v)(u, v). Explain briefly the geometric meaning of the second fundamental form

Ldu2+2Mdudv+Ndv2,L d u^{2}+2 M d u d v+N d v^{2},

where L=σuuN,M=σuvN,N=σvvNL=\sigma_{u u} \cdot \mathbf{N}, M=\sigma_{u v} \cdot \mathbf{N}, N=\sigma_{v v} \cdot \mathbf{N}, with N\mathbf{N} denoting the unit normal vector to the surface UU.

Prove that if the second fundamental form is identically zero, then Nu=0=Nv\mathbf{N}_{u}=\mathbf{0}=\mathbf{N}_{v} as vector-valued functions on VV, and hence that N\mathbf{N} is a constant vector. Deduce that UU is then contained in a plane given by xN=\mathbf{x} \cdot \mathbf{N}= constant.