1.II.11F

Analysis II
Part IB, 2006

Let ana_{n} and bnb_{n} be sequences of real numbers for n1n \geqslant 1 such that anc/n1+ϵ\left|a_{n}\right| \leqslant c / n^{1+\epsilon} and bnc/n1+ϵ\left|b_{n}\right| \leqslant c / n^{1+\epsilon} for all n1n \geqslant 1, for some constants c>0c>0 and ϵ>0\epsilon>0. Show that the series

f(x)=n1ancosnx+n1bnsinnxf(x)=\sum_{n \geqslant 1} a_{n} \cos n x+\sum_{n \geqslant 1} b_{n} \sin n x

converges uniformly to a continuous function on the real line. Show that ff is periodic in the sense that f(x+2π)=f(x)f(x+2 \pi)=f(x).

Now suppose that anc/n2+ϵ\left|a_{n}\right| \leqslant c / n^{2+\epsilon} and bnc/n2+ϵ\left|b_{n}\right| \leqslant c / n^{2+\epsilon} for all n1n \geqslant 1, for some constants c>0c>0 and ϵ>0\epsilon>0. Show that ff is differentiable on the real line, with derivative

f(x)=n1nansinnx+n1nbncosnx.f^{\prime}(x)=-\sum_{n \geqslant 1} n a_{n} \sin n x+\sum_{n \geqslant 1} n b_{n} \cos n x .

[You may assume the convergence of standard series.]