1.I.3DComplex Analysis or Complex MethodsPart IB, 2006Let LLL be the Laplace operator, i.e., L(g)=gxx+gyyL(g)=g_{x x}+g_{y y}L(g)=gxx+gyy. Prove that if f:Ω→Cf: \Omega \rightarrow \mathbf{C}f:Ω→C is analytic in a domain Ω\OmegaΩ, thenL(∣f(z)∣2)=4∣f′(z)∣2,z∈Ω.L\left(|f(z)|^{2}\right)=4\left|f^{\prime}(z)\right|^{2}, \quad z \in \Omega .L(∣f(z)∣2)=4∣f′(z)∣2,z∈Ω.