1.I.3D

Complex Analysis or Complex Methods
Part IB, 2006

Let LL be the Laplace operator, i.e., L(g)=gxx+gyyL(g)=g_{x x}+g_{y y}. Prove that if f:ΩCf: \Omega \rightarrow \mathbf{C} is analytic in a domain Ω\Omega, then

L(f(z)2)=4f(z)2,zΩ.L\left(|f(z)|^{2}\right)=4\left|f^{\prime}(z)\right|^{2}, \quad z \in \Omega .