3.I.5D

Complex Methods
Part IB, 2006

The transformation

w=i(1z1+z)w=i\left(\frac{1-z}{1+z}\right)

maps conformally the interior of the unit disc DD onto the upper half-plane H+H_{+}, and maps the upper and lower unit semicircles C+C_{+}and CC_{-}onto the positive and negative real axis R+\mathbb{R}_{+}and R\mathbb{R}_{-}, respectively.

Consider the Dirichlet problem in the upper half-plane:

2fu2+2fv2=0 in H+;f(u,v)={1 on R+0 on R\frac{\partial^{2} f}{\partial u^{2}}+\frac{\partial^{2} f}{\partial v^{2}}=0 \quad \text { in } \quad H_{+} ; \quad f(u, v)= \begin{cases}1 & \text { on } \mathbb{R}_{+} \\ 0 & \text { on } \mathbb{R}_{-}\end{cases}

Its solution is given by the formula

f(u,v)=12+1πarctan(uv).f(u, v)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{u}{v}\right) .

Using this result, determine the solution to the Dirichlet problem in the unit disc:

2Fx2+2Fy2=0 in D;F(x,y)={1 on C+0 on C\frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial^{2} F}{\partial y^{2}}=0 \quad \text { in } \quad D ; \quad F(x, y)= \begin{cases}1 & \text { on } C_{+} \\ 0 & \text { on } C_{-}\end{cases}

Briefly explain your answer.