2.II.16B

Quantum Mechanics
Part IB, 2006

The spherically symmetric bound state wavefunctions ψ(r)\psi(r), where r=xr=|\mathbf{x}|, for an electron orbiting in the Coulomb potential V(r)=e2/(4πϵ0r)V(r)=-e^{2} /\left(4 \pi \epsilon_{0} r\right) of a hydrogen atom nucleus, can be modelled as solutions to the equation

d2ψdr2+2rdψdr+arψ(r)b2ψ(r)=0\frac{d^{2} \psi}{d r^{2}}+\frac{2}{r} \frac{d \psi}{d r}+\frac{a}{r} \psi(r)-b^{2} \psi(r)=0

for r0r \geqslant 0, where a=e2m/(2πϵ02),b=2mE/a=e^{2} m /\left(2 \pi \epsilon_{0} \hbar^{2}\right), b=\sqrt{-2 m E} / \hbar, and EE is the energy of the corresponding state. Show that there are normalisable and continuous wavefunctions ψ(r)\psi(r) satisfying this equation with energies

E=me432π2ϵ022N2E=-\frac{m e^{4}}{32 \pi^{2} \epsilon_{0}^{2} \hbar^{2} N^{2}}

for all integers N1N \geqslant 1.