4.I.6B

Quantum Mechanics
Part IB, 2006

(a) Define the probability density ρ(x,t)\rho(\mathbf{x}, t) and the probability current J(x,t)\mathbf{J}(\mathbf{x}, t) for a quantum mechanical wave function ψ(x,t)\psi(\mathbf{x}, t), where the three dimensional vector x\mathbf{x} defines spatial coordinates.

Given that the potential V(x)V(\mathbf{x}) is real, show that

J+ρt=0\boldsymbol{\nabla} \cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0

(b) Write down the standard integral expressions for the expectation value Aψ\langle A\rangle_{\psi} and the uncertainty ΔψA\Delta_{\psi} A of a quantum mechanical observable AA in a state with wavefunction ψ(x)\psi(\mathbf{x}). Give an expression for ΔψA\Delta_{\psi} A in terms of A2ψ\left\langle A^{2}\right\rangle_{\psi} and Aψ\langle A\rangle_{\psi}, and justify your answer.