3.II.13H3 . \mathrm{II} . 13 \mathrm{H}

Analysis II
Part IB, 2007

Let VV be the real vector space of continuous functions f:[0,1]Rf:[0,1] \rightarrow \mathbb{R}. Show that defining

f=01f(x)dx\|f\|=\int_{0}^{1}|f(x)| d x

makes VV a normed vector space.

Define fn(x)=sinnxf_{n}(x)=\sin n x for positive integers nn. Is the sequence (fn)\left(f_{n}\right) convergent to some element of VV ? Is (fn)\left(f_{n}\right) a Cauchy sequence in VV ? Justify your answers.