1.II.12A
Part IB, 2007
Let and be topological spaces. Define the product topology on and show that if and are Hausdorff then so is .
Show that the following statements are equivalent.
(i) is a Hausdorff space.
(ii) The diagonal is a closed subset of , in the product topology.
(iii) For any topological space and any continuous maps , the set is closed in .