4.II.14A
Part IB, 2007
(a) For a subset of a topological space , define the closure cl of . Let be a map to a topological space . Prove that is continuous if and only if , for each .
(b) Let be a metric space. A subset of is called dense in if the closure of is equal to .
Prove that if a metric space is compact then it has a countable subset which is dense in .