2.II.10G
Part IB, 2007
Suppose that is the complex vector space of complex polynomials in one variable, .
(i) Show that the form , defined by
is a positive definite Hermitian form on .
(ii) Find an orthonormal basis of for this form, in terms of the powers of .
(iii) Generalize this construction to complex vector spaces of complex polynomials in any finite number of variables.