2.II.14FComplex Analysis or Complex MethodsPart IB, 2007Let Ω\OmegaΩ be the half-strip in the complex plane,Ω={z=x+iy∈C:−π2<x<π2,y>0}\Omega=\left\{z=x+i y \in \mathbb{C}:-\frac{\pi}{2}<x<\frac{\pi}{2}, \quad y>0\right\}Ω={z=x+iy∈C:−2π<x<2π,y>0}Find a conformal mapping that maps Ω\OmegaΩ onto the unit disc.