2.II.14F

Complex Analysis or Complex Methods
Part IB, 2007

Let Ω\Omega be the half-strip in the complex plane,

Ω={z=x+iyC:π2<x<π2,y>0}\Omega=\left\{z=x+i y \in \mathbb{C}:-\frac{\pi}{2}<x<\frac{\pi}{2}, \quad y>0\right\}

Find a conformal mapping that maps Ω\Omega onto the unit disc.