4.II.15F

Complex Methods
Part IB, 2007

(i) Use the definition of the Laplace transform of f(t)f(t) :

L{f(t)}=F(s)=0estf(t)dtL\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t

to show that, for f(t)=tnf(t)=t^{n},

L{f(t)}=F(s)=n!sn+1,L{eatf(t)}=F(sa)=n!(sa)n+1L\{f(t)\}=F(s)=\frac{n !}{s^{n+1}}, \quad L\left\{e^{a t} f(t)\right\}=F(s-a)=\frac{n !}{(s-a)^{n+1}}

(ii) Use contour integration to find the inverse Laplace transform of

F(s)=1s2(s+1)2F(s)=\frac{1}{s^{2}(s+1)^{2}}

(iii) Verify the result in (ii) by using the results in (i) and the convolution theorem.

(iv) Use Laplace transforms to solve the differential equation

f(iv)(t)+2f(t)+f(t)=0f^{(i v)}(t)+2 f^{\prime \prime \prime}(t)+f^{\prime \prime}(t)=0

subject to the initial conditions

f(0)=f(0)=f(0)=0,f(0)=1f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=0, \quad f^{\prime \prime \prime}(0)=1