1.II.14D

Methods
Part IB, 2007

Define the Fourier transform f~(k)\tilde{f}(k) of a function f(x)f(x) that tends to zero as x|x| \rightarrow \infty, and state the inversion theorem. State and prove the convolution theorem.

Calculate the Fourier transforms of

Hence show that

sin(bk)eikxk(a2+k2)dk=πsinh(ab)a2eax for x>b\int_{-\infty}^{\infty} \frac{\sin (b k) e^{i k x}}{k\left(a^{2}+k^{2}\right)} d k=\frac{\pi \sinh (a b)}{a^{2}} e^{-a x} \quad \text { for } \quad x>b

and evaluate this integral for all other (real) values of xx.