2.II.15D

Methods
Part IB, 2007

Let y0(x)y_{0}(x) be a non-zero solution of the Sturm-Liouville equation

L(y0;λ0)ddx(p(x)dy0dx)+(q(x)+λ0w(x))y0=0L\left(y_{0} ; \lambda_{0}\right) \equiv \frac{d}{d x}\left(p(x) \frac{d y_{0}}{d x}\right)+\left(q(x)+\lambda_{0} w(x)\right) y_{0}=0

with boundary conditions y0(0)=y0(1)=0y_{0}(0)=y_{0}(1)=0. Show that, if y(x)y(x) and f(x)f(x) are related by

L(y;λ0)=fL\left(y ; \lambda_{0}\right)=f

with y(x)y(x) satisfying the same boundary conditions as y0(x)y_{0}(x), then

01y0fdx=0\int_{0}^{1} y_{0} f d x=0

Suppose that y0y_{0} is normalised so that

01wy02dx=1\int_{0}^{1} w y_{0}^{2} d x=1

and consider the problem

L(y;λ)=y3;y(0)=y(1)=0L(y ; \lambda)=y^{3} ; \quad y(0)=y(1)=0

By choosing ff appropriately in ()(*) deduce that, if

λλ0=ϵ2μ[μ=O(1),ϵ1], and y(x)=ϵy0(x)+ϵ2y1(x)\lambda-\lambda_{0}=\epsilon^{2} \mu[\mu=O(1), \epsilon \ll 1], \quad \text { and } \quad y(x)=\epsilon y_{0}(x)+\epsilon^{2} y_{1}(x)

then

μ=01y04dx+O(ϵ)\mu=\int_{0}^{1} y_{0}^{4} d x+O(\epsilon)