2.II.16B

Quantum Mechanics
Part IB, 2007

Write down the angular momentum operators L1,L2,L3L_{1}, L_{2}, L_{3} in terms of the position and momentum operators, x\mathbf{x} and p\mathbf{p}, and the commutation relations satisfied by x\mathbf{x} and p\mathbf{p}.

Verify the commutation relations

[Li,Lj]=iϵijkLk\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k}

Further, show that

[Li,pj]=iϵijkpk\left[L_{i}, p_{j}\right]=i \hbar \epsilon_{i j k} p_{k}

A wave-function Ψ0(r)\Psi_{0}(r) is spherically symmetric. Verify that

LΨ0(r)=0\mathbf{L} \Psi_{0}(r)=0

Consider the vector function Φ=Ψ0(r)\boldsymbol{\Phi}=\nabla \Psi_{0}(r). Show that Φ3\Phi_{3} and Φ1±iΦ2\Phi_{1} \pm i \Phi_{2} are eigenfunctions of L3L_{3} with eigenvalues 0,±0, \pm \hbar respectively.