1.II.16E

Electromagnetism
Part IB, 2007

A steady magnetic field B(x)\mathbf{B}(\mathbf{x}) is generated by a current distribution j(x)\mathbf{j}(\mathbf{x}) that vanishes outside a bounded region VV. Use the divergence theorem to show that

VjdV=0 and VxijkdV=VxkjidV\int_{V} \mathbf{j} d V=0 \quad \text { and } \quad \int_{V} x_{i} j_{k} d V=-\int_{V} x_{k} j_{i} d V

Define the magnetic vector potential A(x)\mathbf{A}(\mathbf{x}). Use Maxwell's equations to obtain a differential equation for A(x)\mathbf{A}(\mathbf{x}) in terms of j(x)\mathbf{j}(\mathbf{x}).

It may be shown that for an unbounded domain the equation for A(x)\mathbf{A}(\mathbf{x}) has solution

A(x)=μ04πVj(x)xxdV\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\mathbf{j}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d V^{\prime}

Deduce that in general the leading order approximation for A(x)\mathbf{A}(\mathbf{x}) as x|\mathbf{x}| \rightarrow \infty is

A=μ04πm×xx3 where m=12Vx×j(x)dV\mathbf{A}=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{x}}{|\mathbf{x}|^{3}} \quad \text { where } \quad \mathbf{m}=\frac{1}{2} \int_{V} \mathbf{x}^{\prime} \times \mathbf{j}\left(\mathbf{x}^{\prime}\right) d V^{\prime}

Find the corresponding far-field expression for B(x)\mathbf{B}(\mathbf{x}).