1.II.17D
Write down the Euler equation for the steady motion of an inviscid, incompressible fluid in a constant gravitational field. From this equation, derive (a) Bernoulli's equation and (b) the integral form of the momentum equation for a fixed control volume with surface .
(i) A circular jet of water is projected vertically upwards with speed from a nozzle of cross-sectional area at height . Calculate how the speed and crosssectional area of the jet vary with , for .
(ii) A circular jet of speed and cross-sectional area impinges axisymmetrically on the vertex of a cone of semi-angle , spreading out to form an almost parallel-sided sheet on the surface. Choose a suitable control volume and, neglecting gravity, show that the force exerted by the jet on the cone is
(iii) A cone of mass is supported, axisymmetrically and vertex down, by the jet of part (i), with its vertex at height , where . Assuming that the result of part (ii) still holds, show that is given by