1.II.9E

Linear Algebra
Part IB, 2008

Let AA be an m×nm \times n matrix of real numbers. Define the row rank and column rank of AA and show that they are equal.

Show that if a matrix AA^{\prime} is obtained from AA by elementary row and column operations then rank(A)=rank(A)\operatorname{rank}\left(A^{\prime}\right)=\operatorname{rank}(A).

Let P,QP, Q and RR be n×nn \times n matrices. Show that the 2n×2n2 n \times 2 n matrices (PQ0QQR)\left(\begin{array}{cc}P Q & 0 \\ Q & Q R\end{array}\right) and (0PQRQ0)\left(\begin{array}{cc}0 & P Q R \\ Q & 0\end{array}\right) have the same rank.

Hence, or otherwise, prove that

rank(PQ)+rank(QR)rank(Q)+rank(PQR)\operatorname{rank}(P Q)+\operatorname{rank}(Q R) \leqslant \operatorname{rank}(Q)+\operatorname{rank}(P Q R)