3.I.2GGeometryPart IB, 2008A smooth surface in R3\mathbb{R}^{3}R3 has parametrizationσ(u,v)=(u−u33+uv2,v−v33+u2v,u2−v2).\sigma(u, v)=\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+u^{2} v, u^{2}-v^{2}\right) .σ(u,v)=(u−3u3+uv2,v−3v3+u2v,u2−v2).Show that a unit normal vector at the point σ(u,v)\sigma(u, v)σ(u,v) is(−2u1+u2+v2,2v1+u2+v2,1−u2−v21+u2+v2)\left(\frac{-2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{1-u^{2}-v^{2}}{1+u^{2}+v^{2}}\right)(1+u2+v2−2u,1+u2+v22v,1+u2+v21−u2−v2)and that the curvature is −4(1+u2+v2)4\frac{-4}{\left(1+u^{2}+v^{2}\right)^{4}}(1+u2+v2)4−4.