3.I.2G

Geometry
Part IB, 2008

A smooth surface in R3\mathbb{R}^{3} has parametrization

σ(u,v)=(uu33+uv2,vv33+u2v,u2v2).\sigma(u, v)=\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+u^{2} v, u^{2}-v^{2}\right) .

Show that a unit normal vector at the point σ(u,v)\sigma(u, v) is

(2u1+u2+v2,2v1+u2+v2,1u2v21+u2+v2)\left(\frac{-2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{1-u^{2}-v^{2}}{1+u^{2}+v^{2}}\right)

and that the curvature is 4(1+u2+v2)4\frac{-4}{\left(1+u^{2}+v^{2}\right)^{4}}.